Нейросети: как искусственный интеллект помогает в бизнесе и жизни. Нейронные сети и ИИ: самое сложное – понять, чего мы хотим Нейросетевой искусственный интеллект

Говорилось о том, что 47% всех
рабочих мест может быть автоматизировано в течение следующих 20 лет. Основным драйвером этого процесса является применение искусственного интеллекта, работающего с большими данными, как более эффективной замены человеку.

Машины теперь способны решать все больше процессов, за которые раньше отвечали люди. Кроме того, делают это качественнее и во многих случаях дешевле. О том, что это значит для рынка труда, в июле этого года говорил Герман Греф, выступая перед студентами Балтийского федерального университета им. Канта:

“Мы перестаём брать на работу юристов, которые не знают, что делать с нейронной сетью. <...> Вы - студенты вчерашнего дня. Товарищи юристы, забудьте свою профессию. В прошлом году 450 юристов, которые у нас готовят иски, ушли в прошлое, были сокращены. У нас нейронная сетка готовит исковые заявления лучше, чем юристы, подготовленные Балтийским федеральным университетом. Их мы на работу точно не возьмем.”

Продолжая освещать #технобудущее, команда DTI подготовила все, что необходимо знать для первого погружения в нейронные сети : как они устроены, почему все больше компаний предпочитают нейросети живым сотрудникам и какой потенциал по оптимизации различных процессов несет эта технология.

Искусственный интеллект, машинное обучение и нейросети: в чем разница

Нейронная сеть – один из способов реализации искусственного интеллекта (ИИ) .

В разработке ИИ существует обширная область - машинное обучение . Она изучает методы построения алгоритмов, способных самостоятельно обучаться. Это необходимо, если не существует четкого решения какой-либо задачи. В этом случае проще не искать правильное решение, а создать механизм, который сам придумает метод для его поиска.

#справка Во многих статьях можно встретить термин «глубокое» - или «глубинное» - обучение . Под ним понимают алгоритмы машинного обучения, использующие много вычислительных ресурсов. В большинстве случаев под ним можно понимать просто “нейронные сети”.

Чтобы не запутаться в понятиях «искусственный интеллект», «машинное обучение» и «глубокое обучение», предлагаем посмотреть на визуализацию их развития:

#интересное Существует два типа искусственного интеллекта (ИИ): слабый (узконаправленный) и сильный (общий). Слабый ИИ предназначен для выполнения узкого списка задач. Такими являются голосовые помощники Siri и Google Assistant и все остальные примеры, которые мы приводим в этой статье. Сильный ИИ, в свою очередь, способен выполнить любую человеческую задачу. На данный момент реализация сильного ИИ невозможна, он является утопической идеей.

Как устроена нейросеть

Нейросеть моделирует работу человеческой нервной системы, особенностью которой является способность к самообучению с учетом предыдущего опыта. Таким образом, с каждым разом система совершает все меньше ошибок.

Как и наша нервная система, нейросеть состоит из отдельных вычислительных элементов – нейронов, расположенных на нескольких слоях. Данные, поступающие на вход нейросети, проходят последовательную обработку на каждом слое сети. При этом каждый нейрон имеет определенные параметры, которые могут изменяться в зависимости от полученных результатов – в этом и заключается обучение сети.

Предположим, что задача нейросети – отличать кошек от собак. Для настройки нейронной сети подается большой массив подписанных изображений кошек и собак. Нейросеть анализирует признаки (в том числе линии, формы, их размер и цвет) на этих картинках и строит такую распознавательную модель, которая минимизирует процент ошибок относительно эталонных результатов.

На рисунке ниже представлен процесс работы нейросети, задача которой - распознать цифру почтового индекса, написанную от руки.


История нейросетей

Несмотря на то, что нейросети попали в центр всеобщего внимания совсем недавно, это один из старейших алгоритмов машинного обучения. Первая версия формального нейрона, ячейки нейронной сети, была предложена Уорреном Маккалоком и Уолтером Питтсом в 1943 году.

А уже в 1958 году Фрэнк Розенблатт разработал первую нейронную сеть. Несмотря на свою простоту, она уже могла различать, например, объекты в двухмерном пространстве.

Mark I Perceptron - машина Розенблатта

Первые успехи привлекли повышенное внимание к технологии, однако затем другие алгоритмы машинного обучения стали показывать лучшие результаты, и нейросети отошли на второй план. Следующая волна интереса пришлась на 1990-е годы, после чего о нейросетях почти не было слышно до 2010 года.

Почему нейросети вновь популярны

До 2010 года попросту не существовало базы данных, достаточно большой для того, чтобы качественно обучить нейросети решать определенные задачи, в основном связанные с распознаванием и классификацией изображений. Поэтому нейросети довольно часто ошибались: путали кошку с собакой, или, что еще хуже, снимок здорового органа со снимком органа, пораженного опухолью.

Но в 2010 году появилась база ImageNet, содержащая 15 миллионов изображений в 22 тысячах категорий. ImageNet многократно превышала объем существовавших баз данных изображений и была доступна для любого исследователя. С такими объемами данных нейросети можно было учить принимать практически безошибочные решения.


Размер ImageNet в сравнении с другими существовавшими в 2010 году базами изображений

До этого на пути развития нейросетей стояла другая, не менее существенная, проблема: традиционный метод обучения был неэффективен. Несмотря на то что важную роль играет число слоев в нейронной сети, важен также и метод обучения сети. Использовавшийся ранее метод обратного шифрования мог эффективно обучать только последние слои сети. Процесс обучения оказывался слишком длительным для практического применения, а скрытые слои глубинных нейросетей не функционировали должным образом.

Результатов в решении этой проблемы в 2006 году добились три независимых группы ученых. Во-первых, Джеффри Хинтон реализовал предобучение сети при помощи машины Больцмана , обучая каждый слой отдельно. Во-вторых, Ян ЛеКан предложил использование сверточной нейронной сети для решения проблем распознавания изображений. Наконец, Иошуа Бенджио разработал каскадный автокодировщик, позволивший задействовать все слои в глубокой нейронной сети.

Примеры успешного применения нейросетей в бизнесе

Медицина

Команда исследователей из Ноттингемского университета разработала четыре алгоритма машинного обучения для оценки степени риска сердечно-сосудистых заболеваний пациентов. Для обучения использовались данные 378 тыс. британских пациентов. Обученный искусственный интеллект определял риск кардиологических заболеваний эффективнее реальных врачей. Точность алгоритма - между 74 и 76,4 процентами (стандартная система из восьми факторов, разработанная Американской коллегией кардиологии, обеспечивает точность лишь в 72,8%)

Финансы

Японская страховая компания Fukoku Mutual Life Insurance заключила контракт с IBM. Согласно нему, 34 сотрудников японской компании заменит система IBM Watson Explorer AI . Нейросеть будет просматривать десятки тысяч медицинских сертификатов и учитывать число посещений госпиталей, перенесенные операции и другие факторы для определения условий страхования клиентов. В Fukoku Mutual Life Insurance уверены, что использование IBM Watson повысит продуктивность на 30% и окупится за два года.

Машинное обучение помогает распознавать потенциальные случаи мошенничества в различных сферах жизни. Подобный инструмент использует, например, PayPal – в рамках борьбы с отмыванием денег компания сравнивает миллионы транзакций и обнаруживает среди них подозрительные. В результате, мошеннические транзакции в PayPal составляют рекордно низкие 0,32%, тогда как стандарт в финансовом секторе - 1,32%.

Продолжение аналитической записки доступно по ссылке:

Но и решать более важные задачи - например, искать новые лекарства. The Village обратился к экспертам, чтобы узнать, в чем заключаются особенности технологии и как ее используют отечественные компании и университеты.

Что такое нейронные сети?

Чтобы понять, какое место нейронные сети занимают в мире искусственного интеллекта и как они связаны с другими технологиями создания интеллектуальных систем, начнем с определений.

Нейронные сети - один из методов машинного обучения, основы которого зародились в 1943 году, еще до появления термина «искусственный интеллект». Представляют собой математическую модель, отдаленно напоминающую работу нервной системы животных.

По словам старшего научного сотрудника университета Иннополис Станислава Протасова, наиболее близким аналогом человеческого мозга являются сверточные нейронные сети, придуманные математиком Яном Лекуном. «Они лежат в основе многих приложений, претендующих на звание искусственного интеллекта, - например, в FindFace или Prisma», - отмечает он.

Машинное обучение - подраздел искусственного интеллекта на пересечении математики и компьютерных наук. Он изучает методы построения моделей и алгоритмов, основанных на принципе обучения. Машина анализирует скормленные ей примеры, выделяет закономерности, обобщает их и строит правила, с помощью которых решаются разные задачи - например, предсказания дальнейшего развития событий или распознавания и генерации изображений, текста и речи. Помимо нейросетей, здесь также применяются методы линейной регрессии, деревья решений и другие подходы.

Искусственный интеллект - раздел компьютерной науки о создании технологических средств для выполнения машинами задач, которые раньше считались исключительно прерогативой человека, а также обозначение таких разработок. Направление официально оформилось в 1956 году.

Александр Крайнов

Что можно назвать искусственным интеллектом, а что нет - вопрос договоренностей. Человечество по большому счету так и не пришло к однозначной формулировке, что такое интеллект вообще, не говоря уже об искусственном. Но если обобщить происходящее, то можно говорить о том, что искусственный интеллект - это глубокие нейронные сети, решающие сложные задачи на уровне, близком к уровню человека, и в той или иной степени самообучающиеся. При этом под самообучением здесь понимается способность самостоятельно извлекать полезный сигнал из сырых данных.

В каком состоянии сейчас находится отрасль?

По оценкам аналитического агентства Gartner, машинное обучение сейчас находится на пике завышенных ожиданий. Характерный для этого этапа ажиотаж вокруг новой технологии приводит к излишнему энтузиазму, который оборачивается неудачными попытками ее повсеместного использования. Предполагается, что на избавление от иллюзий отрасли понадобится от двух до пяти лет. По мнению российских экспертов, в скором времени нейросетям придется пройти проверку на прочность.

Сергей Негодяев

управляющий портфелем Фонда развития интернет-инициатив

Хотя ученые занимаются формализацией и разработкой нейросетей уже 70 лет, можно выделить два переломных момента в развитии этой технологии. Первый - 2007 год, когда в Университете Торонто создали алгоритмы глубокого обучения многослойных нейронных сетей. Второй момент, спровоцировавший сегодняшний бум, - это 2012 год, когда исследователи из того же университета применили глубинные нейросети и выиграли конкурс ImageNet, научившись распознавать объекты на фото и видео с минимумом ошибок.

Сейчас компьютерных мощностей хватает для решения если не любых, то подавляющего большинства задач на базе нейросетей. Теперь главное препятствие - нехватка размеченных данных. Условно говоря, чтобы система научилась распознавать закат на видео или фотографиях, ей надо скормить миллион снимков заката, указав, где именно он находится в кадре. Например, когда вы загружаете в Facebook фотографию, ваши друзья распознают на ней котика в лучах закатного солнца, а социальная сеть видит в ней набор меток: «животное», «кот», «деревянный», «пол», «вечер», «оранжевый». У кого данных для обучения окажется больше, у того нейросеть и будет умнее.

Андрей Калинин

руководитель «Поиска Mail.Ru»

Развлекательные приложения на основе нейросетей - например, наши Artisto или Vinci - это только вершина айсберга, а заодно отличный способ продемонстрировать их возможности широкой аудитории. На самом деле нейросети способны решать целый ряд сложнейших задач. Наиболее «горячие» направления сейчас - это автопилоты, голосовые помощники, чат-боты и медицина.

Александр Крайнов

глава службы компьютерного зрения «Яндекса»

Можно сказать, что бум нейросетей уже настал, но на пик он еще не вышел. Дальше будет только интереснее. Самые перспективные направления сегодня - это, пожалуй, компьютерное зрение, диалоговые системы, анализ текстов, робототехника, беспилотный транспорт и генерация контента - текстов, изображений, музыки.

Перспективные сферы для внедрения нейросетей

Транспорт

Робототехника

Биотехнологии

Сельское хозяйство

Интернет вещей

Медиа и развлечения

Лингвистика

Безопасность

Влад Шершульский

директор программ технологического сотрудничества Microsoft в России

Сегодня уже случилась нейронная революция. Иногда даже трудно отличить фантастику от реальности. Представьте себе автоматизированный комбайн со множеством камер. Он делает по 5 тысяч снимков в минуту и через нейросеть анализирует, сорняк перед ним или зараженное вредителями растение, после чего решает, как поступить дальше. Фантастика? Уже не совсем.

Борис Вольфсон

директор по развитию HeadHunter

Вокруг нейросетей есть определенный хайп и, на мой взгляд, немного завышенные ожидания. Мы еще пройдем через этап разочарования, прежде чем научимся их эффективно использовать. Многие прорывные результаты исследований пока не очень применимы в бизнесе. На практике зачастую разумнее использовать другие методы машинного обучения - например, различные алгоритмы, основанные на деревьях решений. Наверное, это выглядит не так захватывающе и футуристично, но эти подходы очень распространены.

Чему учат нейронные сети в России?

Участники рынка согласны, что многие достижения нейронных сетей пока применимы лишь в академической сфере. За ее пределами технология используется преимущественно в развлекательных приложениях, которые и подогревают интерес к теме. Тем не менее российские разработчики учат нейросети и решению социально-значимых и бизнес-задач. Остановимся подробнее на некоторых направлениях.

Наука и медицина

Школа анализа данных «Яндекса» участвует в эксперименте CRAYFIS совместно с представителями «Сколково», МФТИ, ВШЭ и американских университетов UCI и NYU. Его суть состоит в поиске космических частиц сверхвысокой энергии с помощью смартфонов. Данные с камер передаются ускоренным нейросетям , способным зафиксировать следы слабо взаимодействующих частиц на снимках.

Это не единственный международный эксперимент, в котором задействованы российские специалисты. Ученые университета Иннополис Мануэль Маццара и Леонард Йохард участвуют в проекте BioDynaMo . Заручившись поддержкой Intel и ЦЕРН, они хотят создать опытный образец, способный воспроизвести полномасштабную симуляцию мозговой коры. С его помощью планируется повысить эффективность и экономичность экспериментов, в которых требуется наличие живого человеческого мозга.

Профессор Иннополиса Ярослав Холодов участвовал в разработке компьютерной модели, способной в десятки раз быстрее предсказать образование белковых связей. С помощью этого алгоритма можно ускорить разработку вакцин и лекарств. В этой же сфере отметились разработчики из Mail.Ru Group, Insilico Medicine и МФТИ. Они использовали генеративные состязательные сети , обученные придумывать молекулярные структуры, для поиска веществ, которые могут оказаться полезными при различных болезнях - от онкологии до сердечно-сосудистых заболеваний.

Красота и здоровье

В 2015 году российская компания Youth Laboratories запустила первый международный конкурс красоты Beauty.AI . Фотографии участников в нем оценивались нейросетями. При определении победителей они учитывали пол, возраст, национальность, цвет кожи, симметричность лица и наличие или отсутствие у пользователей морщин. Последний фактор также подтолкнул организаторов к созданию сервиса RYNKL , позволяющего отследить, как старение влияет на кожу и как с ним борются различные препараты.

Также нейросети применяются в телемедицине. Российская компания «Мобильные медицинские технологии », управляющая проектами «Онлайн Доктор » и «Педиатр 24/7 », тестирует бота-диагноста, который будет полезен как пациентам, так и врачам. Первым он подскажет, к какому специалисту обратиться при тех или иных симптомах, а вторым поможет определить, чем именно болен пришедший.

Оптимизация бизнес-процессов и рекламы

Российский стартап Leadza сумел применить нейросети для более эффективного распределения бюджета на рекламу в Facebook и Instagram. Алгоритм анализирует результаты прошедших кампаний, строит прогноз ключевых метрик и на их основе автоматически перераспределяет расходы таким образом, чтобы интернет-магазины смогли получить больше клиентов за меньшую стоимость.

Команда GuaranaCam задействовала технологии машинного обучения для оценки эффективности размещения товаров и рекламных материалов в офлайне. Система работает на базе облака Microsoft Azure и анализирует покупательское поведение по камерам видеонаблюдения. Владельцы бизнеса получают отчет о состоянии торговли в режиме реального времени. Проект уже применяется в торговом центре «Мега Белая Дача».

На этом успешные отечественные примеры использования нейросетей в бизнесе не заканчиваются. Компания LogistiX , экспериментирующая с технологиями создания искусственного интеллекта с 2006 года, разработала систему оптимизации работы склада . В ее основе лежит обучающаяся нейронная сеть, которая анализирует полученные с фитнес-трекеров данные о работниках и перераспределяет между ними нагрузку. Теперь команда учит нейросети различать брак.

Холдинг «Белфингрупп » пошел еще дальше. Его «дочка» BFG-soft создала облачную платформу BFG-IS, позволяющую управлять предприятием с помощью его виртуальной модели. Последняя строится автоматически на основании собранных системой данных о производстве и не только показывает, как лучше организовать процессы с учетом заданных целей, но и прогнозирует последствия любых изменений - от замены оборудования до введения дополнительных смен. В конце 2016 года Фонд развития интернет-инициатив решил вложить в компанию 125 миллионов рублей.

Рекрутинг и управление персоналом

Российский агрегатор рекрутеров Stafory заканчивает обучение рекуррентной нейронной сети , способной не только давать односложные ответы на вопросы кандидатов, но и вести с ними полноценный разговор о заинтересовавшей вакансии. А команда портала SuperJob тестирует сервис, который предсказывает, какие из сотен однотипных резюме окажутся востребованы конкретным работодателем.

Транспорт

Российский разработчик интеллектуальных систем Cognitive Technologies применяет нейронные сети для распознавания транспортных средств, пешеходов, дорожных знаков, светофоров и других объектов, попадающих в кадр. Также компания собирает данные для обучения нейросети для беспилотного автомобиля . Речь идет о десятках тысяч эпизодов, описывающих реакцию водителей на те или иные критические ситуации на дорогах. В итоге система должна сформулировать оптимальные сценарии поведения авторобота. Такие же технологии применяются и для создания умного сельскохозяйственного транспорта.

Кроме того, нейронные сети могут использоваться в сфере транспорта и другим образом. Летом 2016 года «Яндекс» добавил в принадлежащую ему доску объявлений «Авто.ру » функцию автоматического определения модели машины по ее фото. На тот момент система знала 100 марок.

Психология и безопасность

Российский стартап NTechLab , обошедший Google в международном конкурсе алгоритмов распознавания лиц The MegaFace Benchmark , использовал технологии машинного обучения в приложении FindFace . Оно позволяет найти человека в социальных сетях по фотографии. Зачастую пользователи обращаются к сервису для выявления фейков, но он может быть полезен и правоохранителям. С его помощью уже установили личность нескольких преступников, в том числе захватчика Ситибанка в Москве. Бизнес-версия FindFace.Pro предоставляется компаниям, заинтересованным в идентификации клиентов. Сейчас систему доучивают определять пол, возраст и эмоции окружающих, что может быть полезно не только при общении с клиентами, но и при управлении персоналом.

Аналогичным образом нейросети применяются и еще одной российской компанией - VisionLabs . Она использует технологии распознавания лиц для обеспечения безопасности в банках и формирования специальных предложений для наиболее лояльных клиентов различных розничных точек.

В схожем направлении работает стартап «Эмотиан ». Он дорабатывает систему определения эмоционального состояния городов. Пока нейросеть вычисляет наиболее счастливые районы по публикациям в социальных сетях, однако в дальнейшем компания собирается учитывать и биометрические данные с камер.

Медиа и творчество

Одним из основных игроков на российском рынке нейронных сетей является «Яндекс». Компания использует машинное обучение не только в своих поисковых сервисах, но и в других продуктах. В 2015 году она запустила рекомендательную систему «Дзен », которая формирует ленту из новостей, статей, фотографий и видео, основываясь на интересах конкретного пользователя. Чем чаще он обращается к отобранным алгоритмом материалам, тем точнее нейросеть определяет, что еще ему может понравиться.

Кроме того, «Яндекс» экспериментирует и с творчеством. Сотрудники компании уже успели применить нейросетевой подход к поэзии , а затем и

Статьи рассказывающие про строение нейронных сетей, их виды и выполняемые ими действия.

Несмотря на большое разнообразие вариантов нейронных сетей , все они имеют общие черты. Так, все они, так же, как и мозг человека, состоят из большого числа связанных между собой однотипных элементов – нейронов, которые имитируют нейроны головного мозга.

Многие понятия, относящиеся к методам нейронных сетей, лучше всего объяснять на примере конкретной нейронно-сетевой программы.

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга (Patterson, 1996). Основной областью исследований по искусственному интеллекту в 60-е – 80-е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на представлении, что процесс нашего мышления построен на манипуляциях с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не ухватывают некоторые ключевые аспекты человеческого интеллекта. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственных интеллект, необходимо построить систему с похожей архитектурой.

Июль, 2017

    Описание процессов машинного перевода основанного на базе правил (Rule-Based), машинного перевода на базе фраз (Phrase-Based) и нейронного перевода В этой публикации нашего цикла step-by-step статей мы объясним, как работает нейронный машинный перевод и сравним его с другими методами: технологией перевода на базе правил и технологией фреймового перевода (PBMT, наиболее популярным подмножеством которого является статистический машинный [...]

    Умоляю перестань мне сниться Я люблю тебя моя невеста Белый иней на твоих ресницах Поцелуй на теле бессловесномКогда-то в школе мне казалось, что писать стихи просто: нужно всего лишь расставлять слова в нужном порядке и подбирать подходящую рифму. Следы этих галлюцинаций (или иллюзий, я их не различаю) встретили вас в эпиграфе. Только это стихотворение, конечно, [...]

    Хороший виртуальный ассистент должен не только решать задачи пользователя, но и разумно отвечать на вопрос «Как дела?». Реплик без явной цели очень много, и заготовить ответ на каждую проблематично. Neural Conversational Models - сравнительно новый способ создания диалоговых систем для свободного общения. Его основа - сети, обученные на больших корпусах диалогов из интернета. Борис Янгель [...]

    В этой серии статей приведу краткий перевод с английского языка первой главы книги Майкла Нильсона “Neural Networks and Deep Learning”. Перевод я разбил на несколько статей на хабре, чтобы было удобнее читать: Часть 1) Введение в нейронные сети Часть 2) Построение и градиентный спуск Часть 3) Реализация сети для распознавания цифр Часть 4) …

Ноябрь, 2016

    В компании Microsoft придумали, как сделать машинный перевод неотличимым от выполненного человеком. Результаты можно увидеть уже сейчас. Перевод с иностранного языка является одной из самых сложных компьютерных задач. Хотя качество машинного перевода значительно выросло за последнее время, оно ещё сильно отстаёт от качества перевода, выполненного человеком. Поэтому компания Microsoft начала использовать в своём переводчике самые современные [...]

    Разработки в области нейронных сетей в этом году пережили настоящий бум. Свои алгоритмы мы продемонстрировали в Artisto и Vinci, Google - в AlphaGo, Microsoft - в ряде сервисов для идентификации изображений, были запущены такие стартапы, как MSQRD, Prisma и другие. Приложения на основе нейросетей мгновенно занимали первые строчки рейтингов, в первые десять дней после релиза [...]

    В 1960-х годах появился новый подраздел информатики - искусственный интеллект (ИИ). Полвека спустя инженеры продолжают развивать обработку естественного языка и машинное обучение, чтобы оправдать надежды на появление сильного ИИ. Мы в 1cloud пишем в блоге не только о себе [клиентоориентированность, безопасность], но и разбираем занимательные темы вроде ментальных моделей или систем хранения данных на основе [...]

    Искусственный интеллект создал нейросеть December 15th, 2017

    Дожили до того момента, когда искусственный интеллект создаёт собственную нейросеть. Хотя многие думают, что это одно и тоже. Но на самом деле не всё так просто и сейчас мы попробуем разобраться что это такое и кто кого может создать.


    Инженеры из подразделения Google Brain весной текущего года продемонстрировали AutoML. Этот искусственный интеллект умеет без участия человека производить собственные уникальнейшие ИИ. Как выяснилось совсем недавно, AutoML смог впервые создать NASNet, систему компьютерного зрения. Данная технология серьёзно превосходит все созданные ранее людьми аналоги. Эта основанная на искусственном интеллекте система может стать отличной помощницей в развитии, скажем, автономных автомобилей. Применима она и в робототехнике - роботы смогут выйти на абсолютно новый уровень.

    Развитие AutoML проходит по уникальной обучающей системе с подкреплением. Речь идёт о нейросети-управленце, самостоятельно разрабатывающей абсолютно новые нейросети, предназначенные для тех или иных конкретных задач. В указанном нами случае AutoML имеет целью производство системы, максимально точно распознающей в реальном времени объекты в видеосюжете.

    Искусственный интеллект сам смог обучить новую нейронную сеть, следя за ошибками и корректируя работу. Обучающий процесс повторялся многократно (тысячи раз), до тех пор, пока система не оказалась годной к работе. Любопытно, что она смогла обойти любые аналогичные нейросети, имеющиеся в настоящее время, но разработанные и обученные человеком.

    При этом AutoML оценивает работу NASNеt и использует эту информацию для улучшения дочерней сети; этот процесс повторяется тысячи раз. Когда инженеры протестировали NASNet на наборах изображений ImageNet и COCO, она превзошла все существующие системы компьютерного зрения.

    В Google официально заявили, что NASNet распознаёт с точностью равной 82,7%. Результат на 1.2 % превышает прошлый рекорд, который в начале осени нынешнего года установили исследователи из фирмы Momenta и специалисты Оксфорда. NASNet на 4% эффективнее своих аналогов со средней точностью в 43,1%.

    Есть и упрощённый вариант NASNet, который адаптирован под мобильные платформы. Он превосходит аналоги чуть больше, чем на три процента. В скором будущем можно будет использовать данную систему для производства автономных автомобилей, для которых важно наличие компьютерного зрения. AutoML же продолжает производить новые потомственные нейросети, стремясь к покорению ещё больших высот.

    При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society). Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта.

    Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society).

    Что такое искусственный интеллект?

    Автором термина «искусственный интеллект» является Джон Маккарти, изобретатель языка Лисп, основоположник функционального программирования и лауреат премии Тьюринга за огромный вклад в области исследований искусственного интеллекта.
    Искусственный интеллект — это способ сделать компьютер, компьютер-контролируемого робота или программу способную также разумно мыслить как человек.

    Исследования в области ИИ осуществляются путем изучения умственных способностей человека, а затем полученные результаты этого исследования используются как основа для разработки интеллектуальных программ и систем.

    Что такое нейронная сеть?

    Идея нейросети заключается в том, чтобы собрать сложную структуру из очень простых элементов. Вряд ли можно считать разумным один-единственный участок мозга — а вот люди обычно на удивление неплохо проходят тест на IQ. Тем не менее до сих пор идею создания разума «из ничего» обычно высмеивали: шутке про тысячу обезьян с печатными машинками уже сотня лет, а при желании критику нейросетей можно найти даже у Цицерона, который ехидно предлагал до посинения подбрасывать в воздух жетоны с буквами, чтобы рано или поздно получился осмысленный текст. Однако в XXI веке оказалось, что классики ехидничали зря: именно армия обезьян с жетонами может при должном упорстве захватить мир.
    На самом деле нейросеть можно собрать даже из спичечных коробков: это просто набор нехитрых правил, по которым обрабатывается информация. «Искусственным нейроном», или перцептроном, называется не какой-то особый прибор, а всего лишь несколько арифметических действий.

    Работает перцептрон проще некуда: он получает несколько исходных чисел, умножает каждое на «ценность» этого числа (о ней чуть ниже), складывает и в зависимости от результата выдаёт 1 или -1. Например, мы фотографируем чистое поле и показываем нашему нейрону какую-нибудь точку на этой картинке — то есть посылаем ему в качестве двух сигналов случайные координаты. А затем спрашиваем: «Дорогой нейрон, здесь небо или земля?» — «Минус один, — отвечает болванчик, безмятежно разглядывая кучевое облако. — Ясно же, что земля».

    «Тыкать пальцем в небо» — это и есть основное занятие перцептрона. Никакой точности от него ждать не приходится: с тем же успехом можно подбросить монетку. Магия начинается на следующей стадии, которая называется машинным обучением. Мы ведь знаем правильный ответ — а значит, можем записать его в свою программу. Вот и получается, что за каждую неверную догадку перцептрон в буквальном смысле получает штраф, а за верную — премию: «ценность» входящих сигналов вырастает или уменьшается. После этого программа прогоняется уже по новой формуле. Рано или поздно нейрон неизбежно «поймёт», что земля на фотографии снизу, а небо сверху, — то есть попросту начнёт игнорировать сигнал от того канала, по которому ему передают x-координаты. Если такому умудрённому опытом роботу подсунуть другую фотографию, то линию горизонта он, может, и не найдёт, но верх с низом уже точно не перепутает.

    В реальной работе формулы немного сложнее, но принцип остаётся тем же. Перцептрон умеет выполнять только одну задачу: брать числа и раскладывать по двум стопкам. Самое интересное начинается тогда, когда таких элементов несколько, ведь входящие числа могут быть сигналами от других «кирпичиков»! Скажем, один нейрон будет пытаться отличить синие пиксели от зелёных, второй продолжит возиться с координатами, а третий попробует рассудить, у кого из этих двоих результаты ближе к истине. Если же натравить на синие пиксели сразу несколько нейронов и суммировать их результаты, то получится уже целый слой, в котором «лучшие ученики» будут получать дополнительные премии. Таким образом достаточно развесистая сеть может перелопатить целую гору данных и учесть при этом все свои ошибки.

    Нейронную сеть можно сделать с помощью спичечных коробков — тогда у вас в арсенале появится фокус, которым можно развлекать гостей на вечеринках. Редакция МирФ уже попробовала — и смиренно признаёт превосходство искусственного интеллекта. Давайте научим неразумную материю играть в игру «11 палочек». Правила просты: на столе лежит 11 спичек, и в каждый ход можно взять либо одну, либо две. Побеждает тот, кто взял последнюю. Как же играть в это против «компьютера»?

    Очень просто.

    Берём 10 коробков или стаканчиков. На каждом пишем номер от 2 до 11.

    Кладём в каждый коробок два камешка — чёрный и белый. Можно использовать любые предметы — лишь бы они отличались друг от друга. Всё — у нас есть сеть из десяти нейронов!

    Нейросеть всегда ходит первой. Для начала посмотрите, сколько осталось спичек, и возьмите коробок с таким номером. На первом ходу это будет коробок №11. Возьмите из нужного коробка любой камешек. Можно закрыть глаза или кинуть монетку, главное — действовать наугад.
    Если камень белый — нейросеть решает взять две спички. Если чёрный — одну. Положите камешек рядом с коробком, чтобы не забыть, какой именно «нейрон» принимал решение. После этого ходит человек — и так до тех пор, пока спички не закончатся.

    Ну а теперь начинается самое интересное: обучение. Если сеть выиграла партию, то её надо наградить: кинуть в те «нейроны», которые участвовали в этой партии, по одному дополнительному камешку того же цвета, который выпал во время игры. Если же сеть проиграла — возьмите последний использованный коробок и выньте оттуда неудачно сыгравший камень. Может оказаться, что коробок уже пустой, — тогда «последним» считается предыдущий походивший нейрон. Во время следующей партии, попав на пустой коробок, нейросеть автоматически сдастся.

    Вот и всё! Сыграйте так несколько партий. Сперва вы не заметите ничего подозрительного, но после каждого выигрыша сеть будет делать всё более и более удачные ходы — и где-то через десяток партий вы поймёте, что создали монстра, которого не в силах обыграть.

    Источники:

    ») относятся к определенному типу модели обучения, которая эмулирует принцип работы синапсов в вашем мозге. Традиционные вычисления используют ряд логических операторов для выполнения задачи. Нейронные сети, с другой стороны, используют сеть узлов (которые действуют как нейроны) и аналогов синапсов (edge) для обработки данных. Входные данные проходят через систему и генерируются выходные данные.

    Затем выводы сравниваются с известными данными. Например, скажем, вы хотите обучить компьютер распознавать изображение собаки. Вы пропускаете миллионы изображений собак через сеть, чтобы увидеть, какие изображения она решит принять похожими на собак. Затем человек подтверждает, какие изображения на самом деле являются собаками. Система отдает предпочтение пути в нейронной сети, который привел к правильному ответу. Со временем и спустя миллионы итераций, эта сеть в конечном итоге повысит точность своих результатов.

    Отличный видеоурок за 30 минут рассказывающий основные принципы работы нейронных сетей. Очень советую посмотреть для понимания на базовом уровне.

    Нейросетевые алгоритмы успешно применяются для решения сложных практических задач, традиционно считающихся интеллектуальными: распознавание лиц (и другие задачи распознавания изображений и объектов на изображении), управление беспилотными летательными аппаратами , медицинская диагностика заболеваний и т.д.

    Конечно, технологии и методы искусственного интеллекта делают основной упор на ситуации, обладающие одной или несколькими следующими особенностями:

    • алгоритм решения неизвестен или не может быть использован из-за ограниченности ресурсов компьютера,
    • задача не может быть определена в числовой форме,
    • цели задачи не могут быть выражены в терминах точно определенной целевой функции-критерия.

    Однако, поскольку "знания? это формализованная информация, которую используют в процессе логического вывода ", то можно сказать, что нейросеть берёт факты (фактические знания о мире, представленные в виде обучающей выборки) и в процессе обучения формирует правила ? знания, описывающие найденный нейросетью способ решения. Эти правила принятия решения можно затем извлечь из нейронной сети и записать в одном из традиционных для классических экспертных систем формализмов представления знаний (например, в виде набора продукционных правил логического вывода). Но можно просто пользоваться построенным нейросетевым представлением алгоритма принятия решения, если содержательная интерпретация его менее важна по сравнению с возможностью получения способа решения задачи.

    Возможность быстрого обучения и дообучения нейросетевых экспертных систем позволяет им отражать особенности быстро меняющегося внешнего мира и оперировать актуальным знанием, тогда как традиционный путь формализации знаний людей-экспертов более длителен и трудозатратен.

    Искусственный интеллект в управлении непрерывным производством

    Видеозаписи выступлений и дискуссий с совместной конференции Yandex Data Factory и «Газпром нефти» по применению искусственного интеллекта для задач непрерывного производства. Конференция прошла 13 сентября 2017 года в Санкт-Петербурге.

    Искусственный интеллект в управлении непрерывным производством

    В рамках выступлений рассматриваются следующие темы:

    Как выгодно «принять на работу» искусственный интеллект
    Бизнес-задачи для искусственного интеллекта в непрерывном производстве
    Машинное обучение в разведке и добыче
    Моделирование и анализ данных в управлении непрерывным производством
    Панельная дискуссия «Непрерывное производство 2050»
    Как внедрять науку в бизнес и на какие грабли не стоит наступать
    Дискуссия «Прикладные решения с применением искусственного интеллекта в непрерывном производстве»

    Педро Домингос. Верховный алгоритм: как машинное обучение изменит наш мир

    Педро Домингос. Верховный алгоритм: как машинное обучение изменит наш мир

    Описание

    Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.

    Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.

    Отзывы

    Давненько я не читал такой одновременно назидательной, нагруженной и оптимистичной книги среди нехудожественной литературы! Книга оказалась очень крепким орешком, так как ее автор, известный американский разработчик с сфере искусственного интеллекта Педро Домингос совершенно не является популяризатором науки. Его цель совершенно иная - в первую очередь найти единомышленников, чтобы решить основную проблему современного машинного обучения - найти идеальный алгоритм, посредством которого любая информационная система смогла бы обучаться.

    Сразу стало понятно, что Домингос не одну пятилетку работает в этом направлении, так как он замечательно владеет материалом и полностью владеет "матчастью", поражают новые и точные ссылки на разработки его коллег в той или иной области. Книга написана, с моей точки зрения, очень удачно, что позволит читателям, интересующимся информационными технологиями вообще и технологиями big data в частности, достаточно просто разобраться с текущей ситуацией в научном мире разработок по этому вопросу. Даже читатели, достаточно далекие от информатики, могут в общих чертах познакомиться с предлагаемыми идеями.

    Ну, а Домингос, конечно, оптимист до мозга костей, молодец! Он понимает, что если бы научный мир смог отыскать такой "верховный алгоритм", то наш бы научный прогресс семимильными шагами смог бы продвинуться вперед, как будто как раз в ефремовскую ЭМВ - Эру Мирового Воссоединения. Он предполагает, что это супер-алгоритм должен сочетать элементы всех уже встречающихся в тех или иных областях умных алгоритмов, применяющихся в современных системах. Для этого нужно объединить приверженцев символических, генетических, эволюционных , байесовских, коннекционных алгоритмов. Что же, в этих мыслях есть неплохое зерно. Осталось разобраться с вопросом, сколько лет нам еще понадобится, чтобы "научить" наши компьютеры с помощью такой гипотетической композиции.

    В любом случае, книга очень интересна, так как автор не остается на уровне рассуждений, а готов полностью окунуться в проблему и пытается "захватить в свои сети" все новых и новых оптимистов. Такие книги реально нужны для научного мира с одной стороны и могут воспитываться любопытное подрастающее поколение с другой. Автор (как и издательство МИФ) смогли преподнести мне неожиданный сюрприз. Книга действительно стоящая, заставляющая поразмышлять, порассуждать и помечтать о нашем ближайшем будущем.

    Скачать книгу

    Операционные системы