Кв усилитель сделанные левой рукой. Усилители и трансиверы сделанные левой рукой

Рис. 17
КПЕ с разделённым статором может быть применён в качестве анодного конденсатора в П-контуре и обеспечивает оптимальную его настройку, при условии наличия достаточного расстояния между пластинами (чтобы не пробило ВЧ напряжением. Существует ещё один метод уменьшения начальной ёмкости анодного КПЕ. Подключив этот конденсатор к отводу от катушки П-контура, добиваемся уменьшения вносимой в контур ёмкости и уменьшения влияния КПЕ на частоту его настройки - UA9LAQ).
КПЕ с воздушным диэлектриком и вакуумные: Конденсаторы с воздушным диэлектриком легче найти, они и стóят дешевле, но имеют некоторые недостатки, изложенные выше. Вакуумные КПЕ - дороги, их не так легко найти, но только они, порой обеспечивают П-контуру, всё, что мы хотим от него получить и без применения дополнительных переключаемых конденсаторов постоянной ёмкости. Другим достоинством этих конденсаторов является высокое рабочее напряжение, нечувствительность к загрязнениям окружающей атмосферы и изменениям её влажности и давления и могут проводить большие ВЧ токи. Я никогда не слышал о том, чтобы какой-нибудь вакуумный конденсатор прострелило или в нём образовалась дуга. Средний конденсатор вакуумного типа, применяемый в КВ усилителе может пропускать через себя ВЧ токи во много раз превышающие те, которые способен давать реальный РА. Большинство вакуумных конденсаторов изменяют ёмкость от минимальной до максимальной путём поворота оси регулирования (многооборотные). Конструкция вакуумного КПЕ позволяет устанавливать различные отсчётные устройства со сбросом и установкой в определённое положение, требуемое для отдельных диапазонов. Ограничители в начале и конце регулировки ёмкости КПЕ также предусматриваются, чтобы избежать его повреждения. Установка вакуумных КПЕ может оказаться проблемою, а может и нет, так как большинство таких КПЕ содержат и монтажные приспособления, если таковых не предусмотрено, значит, их легко изготовить. Вакуумные КПЕ могут быть смонтированы в любом положении: вертикально, горизонтально, в подвешенном положении.
Для, по-настоящему, мощного усилителя, лучшим выбором будет применение вакуумных КПЕ, которые не прошивает даже при очень больших подводимых к ним мощностях. Да, не дёшевы они, но скупой платит дважды… (Попадание небольшой части воздуха во время хранения, транспортировки или эксплуатации делают такие КПЕ абсолютно непригодными из-за возникновения в них разрядов. Перед эксплуатацией необходимо проверить КПЕ на утечку с помощью высоковольтного тестера и оберегать их от деформации и ударов при эксплуатации - UA9LAQ).
Один момент: чем выше используемое в усилителе анодное напряжение, чем труднее найти подходящий КПЕ с воздушным диэлектриком, который бы выдержал постоянное анодное напряжение плюс ВЧ и не явился причиной возникновения дуг или проблем с перекрытием по ёмкости. При напряжении на аноде ламп(ы) РА в 3 кВ, ещё можно допустить применение КПЕ с воздушным диэлектриком, проблемы применения их при анодном напряжении 4 кВ и более возрастают по экспоненциальному закону. (Автор, видимо, имеет в виду непосредственное подключение КПЕ к аноду лампы без разделительного конденсатора, но и, будучи включенным после разделительного конденсатора, анодный конденсатор с воздушным диэлектриком в П-контуре должен иметь повышенное расстояние между пластинами: с повышением анодного напряжения возрастает выходное сопротивление лампы, а, значит, увеличивается и РЧ напряжение, значит, риск пробоя промежутка между пластинами КПЕ увеличивается - UA9LAQ).
При покупке вакуумных КПЕ, обратите внимание на состояние электродов (пластин) внутри стеклянного корпуса. Если они потеряли свой сияющий медный вид, значит, скорее всего в КПЕ нарушен вакуум. Если, при полном выкручивании регулировочного винта, отсутствует сопротивление, оказываемое при разведении пластин, то, скорее всего, КПЕ - сломан. В общем, перемещение пластин внутри КПЕ должно сопровождаться сопротивлением (требуется усилие), а внутренности КПЕ должны блестеть, как будто их только что начистили. Иначе, лучше обойдите этот КПЕ стороной!
Переключатель диапазонов: Не скупитесь на эту важную часть РА. Купите себе лучший, какой только сможете достать. Иначе, просто, пожалеете! Очень приличные переключатели изготавливает Radio Switch Corp. Их переключатель модели 86 - хорош, однако, самым лучшим является переключатель топ-модели 88. Этот переключатель рассчитан на напряжение 13 кВ и ток 30 А. Даже 5 кВт передатчик не сможет "зажечь дугу” на этом переключателе. Для П- или L- контуров в этом переключателе потребуется, по крайней мере, два набора контактов, но три – лучше. Группа контактов должна быть предусмотрена на каждый диапазон из используемых. Специальный переходник должен быть использован, чтобы соединить ось переключателя в П-контуре с осью переключателя входных контуров (т. е., при переключении диапазонов РА одной ручкой). Если на входе РА используются резисторы (ненастраиваемый вход), тогда, естественно, надобность в переходнике отпадает. Есть ещё возможность применения отдельных переключателей на входе и выходе усилителя, но, чтобы исключить установку переключателей в неверное несоответствующее положение, необходимо применить какую-либо блокировку: механическую или электронную.
На Рис. 17 показана конфигурация переключателя, которая поможет начинающему конструктору понять требования, предъявляемые к П-контуру на диапазоны 160…10 метров. Поохоттесь за подобными переключателями и на ярмарках, рынках, а также поищите в Интернете, пойдут и исправные б/у.
Накальные дроссели: Дроссель в цепи накала лампы с катодом прямого накала абсолютно необходим, при подогревных катодах, как у ламп типа 8877, без такого дросселя можно и обойтись. Катод прямого накала можно найти почти во всех старых мощных лампах со стеклянным баллоном, в качестве нити накала и катода там используется торированный вольфрам. На таком катоде присутствуют как большой ток, так и большое ВЧ напряжение, которые должны быть развязаны от проникновения в другие цепи, так что, тут и устанавливают мощные дроссели. Такой дроссель обычно громоздок, его намотка производится двойным проводом, виток к витку на ферритовом стержне и содержит количество витков, достаточное для полного удаления ВЧ после дросселя. Развязывающие конденсаторы, обычно ставят сразу после дросселя со стороны подвода напряжения накала от блока питания, на корпус. У этого типа дросселя - очень большая величина индуктивности, при этом, он обеспечивает прохождение через себя больших токов, Я опробовал также использование тороидального дросселя и остался им доволен, тем более, что этот дроссель имел и небольшие габариты.
В лампах с подогревными катодами, такой катод представляет собой оксидированный "рукав”, одетый на нить накала, которая его подогревает для получения электронной эмиссии. Катоды такого типа требуют меньших токов накала, чем первые, рассмотренные выше, и не допускают распространения ВЧ, так как катодный "рукав” оказывает постоянное экранирующее действие (внешняя сторона, сообразно со скин-эффектом излучает и втянута в схему функционирования ВЧ токов, нижняя РЧ токам не подвержена и служит замкнутым экраном, тут можно ещё вспомнить и про токи Фуко - UA9LAQ). Тем не менее, дроссели в цепь накала включать нужно, чтобы исключить попадание, пусть даже случайного выброса ВЧ в питающий комплекс. Дроссель накала в схемах с лампами, имеющими подогревные катоды, уже не должен быть большим, громоздким, иметь большую индуктивность, поскольку действующие в цепи накала ВЧ токи малы. Дроссель имеет небольшие габариты, намотан двойным проводом достаточного сечения для пропускания тока накала в резиновой или тефлоновой изоляции, намотка производится на небольшом кольцевом или стержневом ферритовом сердечнике. Индуктивность дросселя для работы на диапазонах 160…10 метров должна составлять 30…300 мкГн. Развязывающие конденсаторы включают с обоих проводов накала на корпус усилителя в точке подключения к дросселю со стороны блока питания. Ставьте также конденсаторы между проводами накала со стороны цоколя лампы и катодом. Связь нити накала по ВЧ с катодом будет способствовать выравниванию ВЧ потенциалов на обоих. Это будет препятствовать различного рода неоднородностям в сигналах: вспышкам, прострелам, хрустам, пробоям на нить накала, уравняет оба края нити накала по ВЧ, что устранит колебания накального напряжения.


Рис. 18
На Рис. 18 приведена типовая схема включения лампы с подогревным катодом с обычным накальным дросселем.
ALC: Эту схему необходимо делать обязательно. Обойтись без неё можно только в случае, если Вы используете лампу, которая может раскачиваться полной мощностью имеющегося возбудителя. Примером может являтся лампа 3CX1200A7, которая может раскачиваться мощностью до 120 Вт, включительно. Тем не менее, независимо от того, используете Вы лампу 8877 или 3CX800A7, мощности в 120 Вт вполне хватит, чтобы систематически выводить из строя сетки. Система ALC препятствует этому, но если Вам "нравится” менять лампы чаще, чем это требуется, не делайте никакой ALC. Лучшей точкой привязки возбудителя к усилителю является точка между реле приём/передача на входе и входным настраиваемым устройством.
Схема ALC детектирует в усилителе небольшую часть входного ВЧ сигнала возбудителя. Этот выпрямленный сигнал - отрицательной полярности и может изменяться в пределах от -1 до -12 В. Изменяющийся в отрицательную сторону сигнал подаётся обратно в возбудитель, который смещает усилитель мощности в возбудителе, а тот в свою очередь уменьшает выходную мощность возбудителя и этим предотвращает перекачку оконечного РА.
Процедура установки порога ALC заключается в следующем:
1. Настроить усилитель на полную выходную мощность.
2. Подстроить потенциометром установки порога ALC такой уровень, чтобы в выходном сигнале появилось едва заметное уменьшение его мощности.
3. Всё. Установка закончена.
После установки порога ALC, уровень ВЧ раскачки может быть увеличен или уменьшен, но максимальная выходная мощность усилителя, установленная с помощью регулятора ALC, уже не будет превышена.
Расположение регулировочного органа системы ALC может быть как на задней, так и на передней панели управления, но, в любом случае, хорошо помечено. Установочная регулировка оправдывает себя на практике, так как таковая не может быть случайно сбитой (для регулировки нужно взять отвёртку да ещё залезть под крышку, сняв возможный фиксатор). Однажды установленная, регулировка порога ALC редко изменяется.
На Рис. 19 показана типовая схема системы ALC, простая и эффективная.

Рис. 19
Регулироки: Наиболее заметная часть усилителя - панель регуляторов, она же и самая сложная. Есть много способов расположения и управления аппаратом. Насколько проста будет панель управления зависит от разработчика и изготовителя.
Существуют готовые платы, которые можно приобрести и установить в усилитель, но это немного не то, ведь самому создать усилитель с нуля – намного интереснее, тем не менее, для начинающего - это выход из положения. Помните, чем сложнее аппарат, тем труднее с ним управляться и ремонтировать. Простота и надёжность, - вот из чего нужно исходить при разработке усилителя. Если конструктор хочет создать полностью автоматизированный усилитель и чувствует, что может справиться с задачей, то флаг ему в руки… Трудновато будет, да и проблем будет, проблем… Для начинающих советую, строить самые простые, надёжные, без наворотов усилители. После того, как построите попроще, будут и более сложные аппараты, более изящные.
Вот так посмотрите на проблему: ”Ты - инженер-разработчик, ты решил, что сделаешь аппарат, сколько бы времени и сил это не потребовало!”
Послесловие: В наше время, когда легко купить и эксплуатировать любительское оборудование, какое хочешь, легко забыть о том удовлетворении, которое приносит самостоятельное его изготовление. Тот, кто покупает и потом играет дорогой игрушкой, никогда не испытает этого чувства. Тем, кто, всё-таки, хочет испытать его, приложить собственные руки и голову и сделать свой ВЧ усилитель, как их делали в своё время наши коллеги предшественники и посвящена настоящая статья. Невозможно описать словами то чувство завершённости, исполненного долга, удовлетворения от полученного опыта. А ещё и приобретёте чего-нибудь новенького в процессе…
Если у Вас есть вопросы, я с удовольствием поделюсь знаниями и опытом с Вами, если Вы этого искренне желаете.
73 de Matt Erickson, KK5DR
Свободный перевод с английского: Виктор Беседин (UA9LAQ) [email protected]
г. Тюмень ноябрь, 2003 г

Ламповый кв усилитель мощности собран на 4-х лампах ГУ-50. Включенных параллельно по схеме с общими сетками, и предназначен для работы в диапазонах 80, 40, 30, 20, 15 и 10 м. Если монтаж усилителя выполнен согласно требованиям, предъявляемым к таким устройствам, не требуется нейтрализация проходной емкости ламп. Максимальная выходная мощность усилителя - 350 - 400 Вт.Для питания усилителя используются два силовых трансформатора. Выходы выпрямителей на диодах VD1 - VD4 и VD5 - VD8 включены параллельно и нагружены на емкостный фильтр (электролитические конденсаторы С1 -СЗ). Параллельно каждому диоду выпрямителя включен высокоомный резистор и конденсатор небольшой емкости. Что повышает электрическую “прочность” выпрямителей и уменьшает пульсации выходного напряжения.Анодное напряжение составляет приблизительно 1000 В.
Усилитель мощности

Постоянное напряжение +15 В получается на выходе однополупериодного выпрямителя VD9-C4 и используется для питания реле и светодиодов, индицирующих режим работы усилителя.
Напряжение накала подается на подогреватели ламп через дроссель Др6.
На входе усилителя установлен фильтр нижних частот C6-L1-C7 с частотой среза около 30 МГц. Тем не менее, учитывая, что входное сопротивление усилителя довольно низкое и меняется в зависимости от диапазона. Между усилителем и трансивером желательно установить согласующее устройство. Хорошо согласованный с трансивером усилитель при небольшой мощности возбуждения (около 50 Вт) позволяет получить выходную мощность 400 Вт (и даже больше!). И обеспечивает на выходе спектрально чистый сигнал (конечно, если трансивер и усилитель исправны и работают в номинальных режимах).

Если ламповый КВ усилитель мощности будет эксплуатироваться с трансивером,

на выходе которого установлен П-контур. То при использовании короткого соединительного кабеля между этими устройствами согласующее устройство не требуется. На выходе усилителя установлен традиционный П-контур, но т.к. “анодный” конденсатор переменной емкости С11 имеет малые начальную и максимальную емкость, к нему в диапазоне 80 м параллельно подключается конденсатор С12.
При замыкании контактов переключателя S2.1 срабатывает реле К1, с помощью контактов которого выход трансивера подключается к входу усилителя. Выход усилителя к антенне, а катоды ламп VL1 - VL4 - к общему проводу (через резистор R2).

Анодный дроссель Др7 намотан на ребристом керамическом каркасе 40 мм и содержит 30 витков провода 0,5 мм.
Резистор R2 состоит из двух включенных параллельно резисторов сопротивлением по 1 Ом.
Катушка L1 - бескаркасная, намотана проводом 0,1 мм на оправке 12 мм и содержит 11 витков, катушка L2 - 9 витков посеребренного провода 3 мм, намотанного на ребристом керамическом каркасе. Положение отводов подбирается при настройке КСВ на выходе усилителя не должен превышать 2. Кроме того, рекомендуется подключать антенну к усилителю через фильтры нижних частот, а при длительной работе в режиме передачи применять принудительное охлаждение.

Схему в формате Splan можно скачать

Очень многие коротковолновики убеждены - о ламповых усилителях известно все. И даже больше... Может быть. Вот только число некачественных сигналов в эфире не уменьшается. Скорее наоборот. И что самое печальное, все это происходит на фоне роста количества используемых промышленных импортных трансиверов, параметры передатчиков которых достаточно высоки и удовлетворяют требованиям FCC (американской Федеральной комиссии связи). Однако иных моих коллег по эфиру, смирившихся с тем, что FT 1000 "на коленке" не сделаешь и использующих РА, сконструированные по канонам тридцатилетней давности (ГУ29 + три ГУ50) и т.д., не покидает уверенность, что по РА "мы впереди планеты всей". Замечу, "они там, за рубежом", не только покупают, но и конструируют РА, достойные внимания и повторения.

Как известно, на KB в усилителях мощности применяются схемы с общей сеткой (ОС) и с общим катодом (ОК). Выходной каскад с ОС - почти стандарт для радиолюбителей СНГ. Здесь используются любые лампы - и специально предназначенные для работы по схеме с ОС, и лампы для линейного усиления в схемах с ОК. По-видимому, объяснить это можно следующими причинами:
- схема с ОС теоретически не склонна к самовозбуждению, т.к. сетка заземлена либо по ВЧ, либо гальванически;
- в схеме с ОС линейность на 6 дБ выше за счет отрицательной обратной связи по току;
- РА с ОС обеспечивают более высокие энергетические показатели, чем РА с ОК.

К сожалению, что хорошо в теории, на практике хорошо не всегда. При использовании тетродов и пентодов с высокой крутизной вольтамперной характеристики, третья сетка или лучеобразующие пластины которых не соединены с катодом, РА с ОС могут самовозбуждаться. При неудачном монтаже, некачественных комплектующих (особенно конденсаторах) и плохом согласовании с трансивером легко создаются условия баланса фаз и амплитуд для получения классического автогенератора на KB или УКВ по схеме с ОС. Вообще, согласовать трансивер с РА по схеме ОС не так просто, как об этом иногда пишут. Часто приводимые цифры, например 75 Ом для четырех Г811, верны только теоретически. Входное сопротивление РА с ОС зависит от мощности возбуждения, анодного тока, настройки П-контура и т.д. Изменение любого из этих параметров, например повышение КСВ антенны на краю диапазона, вызывает рассогласование на входе каскада. Но и это еще не все. Если на входе РА с ОС не применяется настроенный контур (а это обычное явление в самодельных усилителях), то напряжение возбуждения становится несимметричным, т.к. ток от возбудителя протекает только на отрицательных полупериодах входного напряжения, и это увеличивает уровень искажений. Таким образом, возможна ситуация, когда вышеприведенные факторы сведут на нет преимущества схемы с ОС. Но, тем не менее, РА с ОС популярны. Почему?

На мой взгляд, вследствие отличных энергетических показателей: когда необходимо "качнуть мощу", схеме с ОС цены нет. О линейности усилителя при этом думают в последнюю очередь, ссылаясь на крепко усвоенное из - "вносимые каскадом искажения мало зависят от выбора рабочей точки на характеристике". Например разработанная для линейного усиления однополосных сигналов лампа ГУ74Б в типовом включении в схеме с ОК должна иметь ток покоя около 200 мА, и вряд ли удастся при этом получить выходную мощность более 750 Вт (при Ua=2500 В) без риска для долголетия лампы, т.к. мощность рассеяния на аноде будет предельной. Другое дело, если ГУ74Б включить с ОС - ток покоя можно установить менее 50 мА, а получить выходную мощность 1 кВт . Сведений об измерении линейности подобных РА разыскать не удалось, а аргументы типа "на данном усилителе проведено множество QSO, и корреспонденты неизменно отмечали высокое качество сигнала" - субъективны, следовательно, неубедительны. Мощность более 1 кВт в приведенном выше примере обеспечивает популярный промышленный ALPHA/POWER ETO 91В, использующий пару ламп ГУ74Б с ОК в рекомендованном производителем режиме работы с известными интермодуляционными характеристиками. По-видимому, разработчики данного усилителя были озабочены не только экономическими соображениями (еще одна лампа удорожает и усложняет конструкцию), но и соответствием параметров РА нормам и требованиям FCC.

Достоинством РА с ОС считается отсутствие необходимости стабилизации напряжений экранной и управляющей сеток. Верно это лишь для схемы, в которой указанные сетки непосредственно соединены с общим проводом . Подобное включение современных тетродов вряд ли можно считать корректным - не только отсутствуют данные о линейности каскада в таком режиме, но и мощность рассеяния на сетках, как правило, превышает допустимую. Мощность возбуждения для такой схемы - около 100 Вт, а это вызывает повышенный разогрев трансивера, например при интенсивной работе на общий вызов. Кроме того, при длинном соединительном кабеле требуется применение на входе усилителя коммутируемого П-контура, чтобы избежать высоких значений КСВ и связанных с этим проблем.

К недостаткам схем с ОК причисляют необходимость стабилизации напряжений экранной и управляю щей сеток; однако у современных тетродов в режиме АВ1 мощность, потребляемая указанными цепями, невелика (20...40 Вт), а стабилизаторы напряжения на доступных в настоящее время высоковольтных транзисторах достаточно просты. Если на силовом трансформаторе отсутствуют необходимые напряжения, можно применить подходящие маломощные трансформаторы, подключив их наоборот - вторичной обмоткой к напряжению накала 6,3 или 12,6 В. Другой недостаток схемы с ОК - большая мощность рассеяния на аноде в паузах передачи. Один из возможных путей ее снижения приведен на рис.1 (упрощенная схема из ).

Напряжение возбуждения через емкостный делитель подается на двухполупериодный выпрямитель VD1, VD2 и далее - на компаратор DA1. Срабатывание компаратора переводит лампу из закрытого состояния в рабочий режим. В паузах передачи напряжение возбуждения отсутствует, лампа заперта, и мощность рассеяния на аноде незначительна.

На мой взгляд, РА с ОС может применяться на KB с устаревшими лампами - для удешевления конструкции, или с лампами, специально предназначенными для работы в таком включении. Применение на входе настроенного LC-контура невысокой добротности или П-контура обязательно. Это особенно актуально для трансиверов с широкополосными транзисторными выходными каскадами, нормальная работа которых возможна только на согласованную нагрузку. Безусловно, если выходной каскад трансивера имеет настраиваемый П-контур или антенный тюнер, и длина соединительного кабеля не превышает 1,5 м (т.е. представляет собой емкость для используемого диапазона частот), такой контур можно рассматривать как входной для РА. Но в любом случае применение П-контура на входе РА значительно снижает вероятность самовозбуждения на УКВ. Кстати, именно так реализовано подавляющее большинство РА с ОС, описанных в зарубежной литературе и выпускаемых промышленностью для коротковолновиков. Для радиолюбителей, задумавших создать РА мощностью 500 Вт и более, рекомендуется применение ламп, специально разработанных для линейного усиления радиочастотных сигналов в схеме с ОК. Особую актуальность данная рекомендация приобретает при использовании дорогостоящих "фирменных" трансиверов - в РА с ОС при самовозбуждении на входе присутствует значительная мощность ВЧ- или СВЧ-колебаний, что может привести к выходу из строя либо выходного каскада, либо входных цепей трансивера (в зависимости от коммутации цепи RX - ТХ в момент возникновения самовозбуждения). Увы, это не авторская фантазия, а реальные случаи из практики.

И еще одну проблему нельзя не затронуть, рассматривая ламповые РА - с легкой руки В.Жалнераускаса и В.Дроздова популярность приобрели схемы построения передающей части трансивера, когда после диапазонного полосового фильтра для возбуждения лампового усилителя используется линейное усиление радиочастотного сигнала транзисторными каскадами без промежуточной фильтрации. Конструктивно трансивер упрощается, но цена такой простоты - повышенное содержание побочных излучений при недостаточно тщательной настройке подобных схем.

Ситуация еще больше ухудшается, когда выходной мощности трансивера недостаточно для "раскачки", например в случае ГУ74Б с ОК с широкополосной входной цепью на трансформаторе 1:4. Необходимого усиления обычно добиваются дополнительным широкополосным каскадом . Если используется низкая ПЧ, и после двух-трехконтурного ДПФ передающий тракт имеет коэффициент усиления 40...60 дБ по мощности, а П-контур является единственной селективной цепью этого тракта, то не обеспечивается достаточное подавление побочных излучений. Последствия можно услышать на любительских диапазонах ежедневно, например вторые гармоники, почти равные по мощности основному сигналу. Послушайте, к примеру, участок 3680...3860 кГц, и почти обязательно услышите сигналы второй гармоники от SSB-станций 160-метрового диапазона. Собственно РА также обладает определенной нелинейностью, поэтому даже при подаче на него спектрально чистого радиочастотного сигнала на выходе неизбежно присутствуют гармоники. Одиночный П-контур можно рекомендовать при выходной мощности до 1 кВт. При большей мощности зарубежные любительские и промышленные РА используют П-L контур, изображенный на рис. 1 - коэффициент фильтрации у него в два раза выше.

Рассмотрим теперь схемные решения, демонстрирующие достаточно требовательный подход при конструировании РА.

Публикация знакомит нас с американской версией самодельного РА на ГУ74Б. George Т. Daughters, AB6YL, задумав переделать промышленный усилитель Dentron MLA2500, первоначально построенный на триодах по схеме с ОС, остановил свой выбор на лампе ГУ74Б (американское обозначение - 4СХ800А). Для этого проекта он посчитал оптимальным использование режима подачи сигнала возбуждения на управляющую сетку, где входная мощность рассеивается на пятидесятиомном резисторе между сеткой и общим проводом. Это позволило устранить необходимость в настроенных входных контурах и легко обеспечить широкополосность. Низкий импеданс цепи управляющей сетки помогает избежать самовозбуждения и обеспечивает выходному каскаду трансивера стабильную резистивную нагрузку с низким КСВ. Кроме того, очень популярный коммерческий усилитель ALPHA/POWER 91B с выходной мощностью 1500 Вт использует пару 4СХ800А в таком включении - это уже опробованная схема!

Схема усилителя приведена на рис. 2.


Большая входная емкость 4СХ800А (около 50 пФ) требует применения индуктивной компенсации, особенно на высокочастотных диапазонах. Проволочный резистор R1B 6 Вт/6 Ом обеспечивает необходимую индуктивность и дополняет совместно с безиндуктивными R1A и R1С сопротивление нагрузки до требуемого - 50 Ом/50 Вт. Согласно измерениям AB6YL, на частотах ниже 35 МГц входной КСВ - менее 1,1.

Энергетические показатели усилителя можно улучшить, подключая безиндуктивный резистор R2 сопротивлением до 30 Ом между катодом и общим проводом. Этот резистор обеспечивает отрицательную обратную связь, что позволяет снизить ток покоя и несколько улучшить линейность; уровень составляющих пятого порядка уменьшается при этом примерно на 3 дБ.

Параметры П-контура не приводятся, т.к. использованы компоненты от Dentron - MLA2500.

Накал 4СХ800А должен быть включен минимум за 2,5 минуты до подачи напряжений возбуждения и питания.

Технические условия на 4СХ800А/ ГУ74Б , поставляемые на американский рынок, рекомендуют напряжение смещения на управляющей сетке около -56 В при экранном напряжении +350 В. Источник питания управляющей сетки состоит из маломощного трансформатора Т2, включенного наоборот - на вторичную обмотку, используемую как первичная, подается напряжение 6,3 В от основного трансформатора Т1, что обеспечивает около 60 В переменного напряжения. На выходе параметрического стабилизатора VD9, R12 присутствует напряжение -56 В. Любой ток управляющей сетки вызывает нелинейные искажения, приводящие к splatter. Детектор тока сетки собран на операционном усилителе DA1, включенном по схеме компаратора. Когда ток сетки превышает несколько миллиампер, увеличивается падение напряжения на R16, вызывая срабатывание компаратора и свечение красного светодиода.

Экранная сетка питается от стабилизатора напряжения (VT1, VT2, VD7) с защитой от превышения потребляемого тока. Контакты реле К2 переключают экранную сетку между общим проводом (через R13) в режиме приема и напряжением +350 В в режиме передачи. Резистор R9 предотвращает броски напряжения при коммутации реле. Ток экранной сетки индицируется стрелочным прибором РА1, т.к. у тетродов ток экранной сетки - лучший индикатор резонанса и настройки, нежели ток анода. В режиме передачи анодный ток покоя должен быть 150...200 мА, при этом ток экранной сетки составляет около -5 мА (если используется прибор без нуля посередине, то стрелка переместится влево до упора). Усилитель работает в линейном режиме и не нуждается в ALC (пока нет тока управляющей сетки) при токе анода 550...600 мА и токе экранной сетки примерно 25 мА. Если ток экранной сетки при резонансе превышает 30 мА, необходимо увеличить связь с нагрузкой или уменьшить мощность возбуждения. При настройке усилителей на тетродах необходимо помнить, что ток анода увеличивается с ростом мощности возбуждения; ток экранной сетки максимален при резонансе или слабой связи с нагрузкой. Не следует, настраивая усилитель по максимальной выходной мощности, превышать значения параметров, указанных в ТУ для оптимальной линейности. Необходимая мощность возбуждения усилителя уменьшается на высокочастотных диапазонах. Это объясняется влиянием емкости катод - подогреватель, которая шунтирует резистор R2, уменьшая ООС. Необходимо помнить об этом, чтобы избежать перевозбуждения усилителя на 15 и 10 метрах. (Или применить ВЧ-дроссель в цепи накала. Прим. ред.)

Параметры усилителя при входной мощности около 45 Вт приведены в табл.1. (Значение выходной мощности, по-видимому, несколько завышено. Прим.ред.) Перед выключением усилителя после сеанса работы нужно оставить его в положении standby приблизительно на три минуты - вентилятор должен охладить лампу.

Табл.1
Напряжение анода 2200 В
Ток покоя анода 170 мА
Ток анода максимальный 550 мА
Ток экранной сетки максимальный 25 мА 0
Мощность рассеивания на аноде без сигнала 370 Вт
Мощность подводимая 1200 Вт
Мощность выходная 750Вт

Часть вторая

Стремление обеспечить надежную и долговечную работу высоколинейного усилителя мощности ярко продемонстрировал Mark Mandelkern, KN5S . Принципиальные схемы усилителя и вспомогательных цепей приведены на рис.3...8.

Не стоит удивляться обилию полупроводниковых приборов - их применение оправдано и заслуживает внимания, особенно применение схемы защиты. (Однако нельзя утверждать, что все они абсолютно необходимы. Прим. ред.)

При проектировании РА преследовались следующие цели:
- питание нагревателя лампы от стабилизированного источника постоянного тока; применение автоматических таймеров разогрева и охлаждения;
- измерение всех параметров, включая анодный ток и напряжение, без неудобных коммутаций;
- наличие стабилизированных источников смещения и экранного напряжения, допускающих подстройку напряжения в широких пределах;
- обеспечение работоспособности при значительных колебаниях напряжения сети (особенно это актуально при работе в полевых условиях от генератора электрического тока).

Источнику питания подогревателя мощных генераторных ламп редко уделяется должное внимание, а ведь он во многом определяет долговечность работы лампы и стабильность выходной мощности. Разогрев подогревателя должен происходить постепенно, не допуская бросков тока через холодную нить накала. В режиме передачи, когда происходит интенсивная эмиссия электронов, очень важно обеспечить постоянство напряжения накала и, соответственно, температуры катода. Вот основные причины применения для накала лампы стабилизированного источника питания с ограничителем потребляемого тока, который исключает бросок тока в момент включения.

Схема блока питания показана на рис.4 . Выходные напряжения допускают следующие диапазоны регулировки: от 5, 5 до 6 В (накал), от 200 до 350 В (экранная сетка) и от -25 до -125 В (управляющая сетка).

Стабилизатор напряжения накала использует популярную микросхему LN723 в типовом включении. Значительный ток накала тетрода 4СХ1000 (около 9 А) и соединение катода и подогревателя внутри лампы потребовали отдельных проводников большого сечения для сильноточной цепи (А- и А+); по цепи S- и S+ выходное напряжение подается на схему сравнения стабилизатора. Предохранитель FU1 на 10 А лучше всего запаять, а не использовать держатель.

Схема управления нагревателем показана на рис.5 . Схема исключает использование усилителя во время прогрева и защищает нагреватель от повышенного напряжения при неисправности стабилизатора. Защита обеспечивается отключением нагревателя с помощью реле К2 (рис.4). Кроме того, датчик воздушного потока через лампу SA2 (рис.4) контролирует работоспособность вентилятора. Если воздушный поток отсутствует, это также приведет к отключению реле К2 и стабилизатора напряжения накала.

Таймер разогрева (DA3 на рис.5) настроен на пять минут. По ТУ достаточно трех минут, но более длительный разогрев продлит жизнь лампы. Таймер запускается только после появления напряжения на нагревателе. Это определяет компаратор DA2.2, подключенный к точке S+. Так, например, если плавкий предохранитель сгорел, таймер не начнет работу, пока вы не замените предохранитель. При превышении напряжения (например при пробое регулирующего транзистора VT1) срабатывает триггер на DA2.3 и закрывается транзистор VT2, отключая напряжение от обмотки реле К2 (точка HR на рис.5). Конденсатор СЗ обеспечивает начальную установку триггера и, соответственно, открывание транзистора VT2 при подаче напряжения питания.

Наряду с таймером разогрева, усилитель нуждается в таймере охлаждения лампы перед выключением (DA4). При выключении усилителя цепь +12 В разряжается быстрее, чем цепь +24 В (имеющая минимальную нагрузку в режиме приема). На выходе DA2.1 появляется напряжение +24 В, и запускается таймер охлаждения. После запуска на выводе 7 DA4 присутствует низкий уровень напряжения, приводящий к срабатыванию реле К1 (рис.4), через контакты которого обеспечивается работа стабилизаторов +12/-12 В и +24 В. Приблизительно через три минуты на выводе 7 появляется высокий уровень, реле К1 возвращается в исходное состояние, и усилитель окончательно обесточивается. Цепь +24 RLY исключает работу таймера охлаждения, если по каким-либо причинам усилитель был выключен и сразу же включен. Например, прохождение радиоволн заканчивается и диапазон кажется мертвым - вы выключаете усилитель. Внезапно появляется интересный корреспондент - тумблер питания вновь в положении ON! При переходе в режим передачи напряжение +24RLY переводит DA2.1 в низкое состояние и сбрасывает таймер охлаждения.

Как и в случае с напряжением накала, стабилизатор напряжения экранной сетки редко удостаивается внимания при конструировании РА. А зря... Мощные тетроды из-за явления вторичной эмиссии имеют отрицательный ток экранной сетки, поэтому источник питания данной цепи должен не только отдавать ток в нагрузку, но и потреблять его при изменении направления. Последовательные схемы стабилизаторов этого не обеспечивают, и при появлении отрицательного тока экранной сетки транзистор последовательного стабилизатора может выйти из строя. Потеряв несколько высоковольтных транзисторов при настройке усилителя, радиолюбители приходят к решению установить мощный резистор сопротивлением 5...15 кОм между экранной сеткой и общим проводом, смирившись с бесполезным рассеиванием мощности. Применение параллельного стабилизатора напряжения, который может не только отдавать, но и принимать на себя ток, позволяет добиться безотказной работы, однако желательно использовать защиту от превышения тока.

Стабилизатор напряжения экранной сетки собран на транзисторах VT3, VT4 (рис.4). Вместо VT3 типа 2N2222A можно использовать высоковольтный, исключив параметрический стабилизатор R6, VD5, но при этом возможно ухудшение коэффициента стабилизации, т.к. высоковольтные транзисторы имеют невысокий коэффициент усиления. Выходное напряжение определяется суммой напряжения стабилизации VD11 и напряжения на переходах база-эмиттер транзисторов VT3, VT4 (15+0,6+0,6=16,2 В), умноженной на коэффициент, определяемый делителем напряжения R11,R12,R13 (12...20) на выходе стабилизатора.

Шунтирующий транзистор установлен непосредственно на алюминиевой пластине размерами 70х100х5 мм, которая, в свою очередь, крепится на боковой стенке с использованием керамических изоляторов. Резистор R7 ограничивает пиковый ток через шунтирующий транзистор VT4 величиной порядка 100 мА.

Схема ПРИЕМ-ПЕРЕДАЧА (рис.6) проверяет шесть сигналов: наличие воздушного потока через лампу (+12Н), состояние переключателя OPERATE-STANDBY, завершение разогрева накала, наличие анодного напряжения, наличие напряжения смещения и состояние схемы защиты от перегрузки. Схема коммутации прием-передача обеспечивает задержку срабатывания реле КЗ 50 мс (рис.4) при переходе на передачу и задержку отключения коаксиального реле 15 мс при переходе на прием. Если используются вакуумные реле, синхронизация реле может быть легко изменена для полного QSK.

Операционные усилители схемы коммутации прием-передача на рис.6 используют очень простые R-C цепи для получения задержки переключения. В режиме передачи на выходе DA1.4 присутствует напряжение порядка +11 В, что обеспечивает быстрый заряд конденсатора С4 через диод VD8 цепи коаксиального реле коммутации антенны Kant. Конденсатор С5 цепи реле питания экранной сетки заряжается при этом через резистор R26, поэтому экранное реле срабатывает позже. При переходе в режим приема на выходе DA1.4 появляется напряжение около -11 В, и происходит обратный процесс. Вход KEY позволяет уменьшить мощность рассеяния на аноде в паузах передачи и избежать изменения формы посылки CW-сигнала при работе с РА, но для этого необходимо, чтобы трансивер имел соответствующий выход. Схема блокировки при перегрузках (рис.7) срабатывает, когда ток управляющей или экранной сетки, или анода превышает значение 1 мА, -30 мА и 1150 мА соответственно. Схема защиты от перегрузки экранной сетки функционирует только при отрицательных токах. Ограничителем положительного тока экранной сетки является резистор R27 в схеме стабилизатора напряжения. Срабатывание схемы защиты от перегрузки (рис.8) вызывает отключение схемы ПРИЕМ-ПЕРЕДАЧА по цепи OL (рис.6), включение с помощью контактов реле К1 дополнительного резистора R2 в цепи смещения управляющей сетки, включение генератора на DA2.4 и мигание красного светодиода VD9 ПЕРЕГРУЗКА на передней панели.

От однополярного источника +24 В питается только микросхема DA2 (рис.5). Все другие операционные усилители используют напряжение питания +12/-12 В.

На рис.7 приведена схема измерения. Пять стрелочных приборов позволяют измерять с помощью дополнительных кнопок 10(!) параметров: прямую/отраженную мощность в антенне, ток/напряжение управляющей сетки, анодный ток/напряжение, ток/напряжение экранной сетки, напряжение/ток накала. Для считывания значений параметров, указанных через дробь, необходимо нажать соответствующую кнопку. Основные параметры считываются немедленно; вторичные параметры имеют большое значение только при начальной настройке и для подстройки после замены лампы. Самый простой неинвертирующий усилитель, используемый здесь - для измерения анодного напряжения (DA2.1). Допустим, что предел измерений должен быть 5000 В; делитель R7, R8 (рис.3) имеет коэффициент деления 10 000, т.е. 5000 В в точке HV2 - это 0,5 В. Резистор R9 не влияет на работу схемы, поскольку операционный усилитель имеет высокое входное сопротивление. При напряжении питания +12/-12 В максимальное выходное напряжение усилителя около +11/-11 В. Допустим, что +10 В выходного напряжения операционного усилителя соответствуют полному отклонению стрелки измерительного прибора при использовании резистора R22 10 кОм и прибора на 1 мА. Требуемый коэффициент усиления (10/0,5) равен 20. Выбрав R15=10к0м, находим, что резистор обратной связи должен иметь сопротивление 190 кОм. Указанный резистор составлен из подстроечного резистора R20 сопротивлением приблизительно в половину номинального значения и постоянного резистора R19, выбранного из ряда стандартных значений.

Схема измерения тока анода аналогична. Напряжение, пропорциональное анодному току, снимается с резистора отрицательной обратной связи R2 в цепи катода (рис.3). Конденсатор С2 обеспечивает демпфирование показаний измерительного прибора РАЗ при работе SSB.

Экранное напряжение измеряется аналогичным образом. Номиналы резисторов, определяющих коэффициент усиления схем измерения прямой и обратной мощности, зависят от конструкции направленного ответвителя.

Несколько иначе реализована схема измерения тока экранной сетки. Выше указывалось, что ток экранной сетки может иметь и отрицательные, и положительные значения, т.е. требуется измерительный прибор с нулем посередине. Схема реализована на операционном усилителе DA2.3 и имеет диапазон измерения -50...0...50 мА, используя для индикации обычный прибор с нулем слева.

При 50 мА положительного тока экранной сетки падение напряжения на резисторе R23 (рис.4) составляет -5В в точке -Е2. Таким образом, от операционного усилителя необходимо усиление -1, чтобы получить требуемое выходное напряжение +5 В для отклонения стрелки на половину шкалы. При R23=10 кОм резистор обратной связи должен иметь номинальное значение 10 кОм; используются подстроечный R32 и постоянный R30 резисторы. Для смещения стрелки прибора на середину шкалы при напряжении питания -12 В требуется коэффициент усиления +5/-12=-0,417. Точное значение коэффициента усиления и, соответственно, нуль шкалы, устанавливается подстроечным резистором R25.

На операционных усилителях DA2.2, DA2.4 реализована расширенная шкала измерения напряжения накала. Дифференциальный усилитель DA2.2 преобразует напряжение накала в однополярное, т.к. точка S не соединена непосредственно с общим проводом. Суммирующий усилитель DA2.4 реализует расширенный масштаб измерения - от 5,0 до 6,0 В. Фактически, это вольтметр с пределом измерения 1 В, смещенный к начальному значению 5 В.

В схемах выпрямителей применяемые диоды должны быть рассчитаны на соответствующий ток, остальные - любые импульсные кремниевые диоды. За исключением высоковольтных транзисторов, можно применять любые маломощные соответствующей структуры. Операционные усилители - LM324 или подобные. Измерительные приборы - РА1...РА5 с током полного отклонения 1 мА.

Приведенные схемы, безусловно, усложняют РА. Но для надежной повседневной работы в эфире и в соревнованиях стоит затратить дополнительные усилия на создание действительно качественного устройства. Если на диапазонах будет больше чистых и громких сигналов, то в выигрыше окажутся все радиолюбители. За QRO без QRM! Выражаю благодарность И.Гончаренко (EU1TT), советы и замечания которого оказали большую помощь при работе над статьей.

Литература

1. Бунимович С., Яйленко Л. Техника любительской однополосной радиосвязи. - Москва, ДОСААФ, 1970.
2. Радио, 1986, N4, С.20.
3. Дроздов В. Любительские KB трансиверы. - Москва, Радио и связь, 1988.
4. QST ON CD-ROM, 1996, N5.
5. http: //www.svetlana.com/.
6. QEX ON CD-ROM, 1996, N5.
7. QEX ON CD-ROM, 1996, N11.
8. Радиолюбитель. KB и УКВ, 1998, N2, С.24.
9. Радиолюбитель, 1992, N6, С.38.
10. ALPHA/POWER ETO 91B User"s Manual.

Г.ПЕЧЕНЬ (EW1EA) "КВ и УКВ" №9 1998 год

(статью дополнено 07.02.2016г.)

UT5UUV Андрей Мошенский.

Усилитель «Джин»

Транзисторный усилитель мощности

с бестрансформаторным питанием

от сети 220 (230)В.

Идея создания мощного, лёгкого и дешёвого усилителя большой мощности актуальна со времён зарождения радиосвязи. Множество прекрасных конструкций на лампах и транзисторах разработано за последний век.

Но до сих пор идут споры, по поводу превосходства твёрдотельной, либо электронно-вакуумной усилительной техники большой мощности…

В эпоху импульсных источников питания вопрос массогабаритных параметров источников вторичного электропитания не столь остр, но, фактически исключив таковой, применив выпрямитель напряжения промышленной сети, всё равно получается выигрыш.

Заманчивой кажется идея использования современных высоковольтных импульсных транзисторов в усилителе мощности радиостанции, применив для питания сотни вольт постоянного тока.

Вашему вниманию предлагается конструкция усилителя мощности на «нижние» КВ диапазоны мощностью не менее 200 Ватт с бестрансформаторным питанием, построенная по двухтактной схеме на высоковольтных полевых транзисторах. Основное преимущество перед аналогами – массогабаритные показатели, низкая стоимость комплектующих, стабильность в работе.

Основная идея – применения активных элементов – транзисторов с граничным напряжением сток-исток 800В (600В) предназначенных для работы в импульсных источниках вторичного электропитания. В качестве усилительных элементов выбраны полевые транзисторы IRFPE30, IRFPE40, IRFPE50 производства компании “International Rectifier”. Цена изделий 2 (два) дол. США. Чуть проигрывают им по граничной частоте, обеспечивая работу лишь в диапазоне 160м, 2SK1692 производства “Toshiba”. Любители усилителей на базе биполярных транзисторов, могут поэкспериментировать с 600-800 вольтовыми BU2508, MJE13009 и иными подобными.

Методика расчёта усилителей мощности и ШПТЛ приведена в справочнике радиолюбителя коротковолновика С.Г. Бунина Л.П. Яйленко. 1984г.

Моточные данные трансформаторов приведены ниже. Входной ШПТЛ TR1 выполнен на кольцевом сердечнике К16-К20 из феррита М1000—2000НМ(НН). Число витков 5 витков в 3 провода. Выходной ШПТЛ TR2 выполнен на кольцевом сердечнике К32-К40 из феррита М1000—2000НМ(НН). Число витков 6 витков в 5 проводов. Провод для намотки рекомендован МГТФ-035.

Возможно изготовить выходной ШПТЛ в виде бинокля, что хорошо скажется на работе в «верхней» части КВ диапазона, правда там приведенные транзисторы не функционируют из-за времени нарастания и спада тока. Такой трансформатор может быть изготовлен из 2 столбцов по 10 (!) колец К16 из материала М1000—2000. Все обмотки по схеме – один виток.

Данные замера параметров трансформаторов приведены в таблицах. Входные ШПТЛ нагружены на входные резисторы (у автора, 5,6 Ома вместо расчётных), включенные параллельно с ёмкостью затвор-исток, плюс ёмкостью за счёт эффекта Миллера. Транзисторы IRFPE50. Выходные ШПТЛ были нагружены со стороны стоков на безындукционный резистор 820 Ом. Векторный анализатор АА-200 производства RigExpert. Завышенный КСВ может быть объяснён недостаточно плотной укладкой витков трансформаторов на магнитопровод, ощутимым несоответствием волнового сопротивления линии из МГТФ-0,35 требуемому в каждом конкретном случае. Тем не менее, на диапазонах 160, 80 и 40 метров проблем не возникает.

Рис 1. Схема электрическая принципиальная усилителя.

Источник питания мостовой выпрямитель 1000В 6А, нагруженный на конденсатор 470,0 на 400В.

Не забывайте о нормах техники безопасности, качестве радиаторов и слюдяных прокладок.

Рис 2. Схема электрическая принципиальная источника постоянного тока.

Рис 3. Фотография усилителя со снятой крышкой.

Таблица 1. Параметры ШПТЛ TR1, выполненного на кольце К16.

Частота кГц R jX SWR
1850 45,5 +4,2 1,15
3750 40,5 +7,2 1,3
7150 40,2 +31,8 2,1

Таблица 2. Параметры ШПТЛ TR2, выполненного на кольце К40.

Частота кГц R jX SWR
1800 48 -0,5 1,04
3750 44 -4,5 1,18
7150 40,3 -5,6 1,28
14150 31,1 4,0 1,5
21200 х х 1,8
28300 х х 2,2

Рис 4. Выходной ШПТЛ на кольце К40.

Таблица 3. Параметры ШПТЛ TR2, конструкции «бинокль».

Частота кГц R jX SWR
1850 27,3 +26 2,5
3750 46 +17 1,47
7150 49 -4,4 1,10
14150 43 -0,9 1,21
21200 х х 1,41
28300 х х 1,7

Рис 5. Выходной ШПТЛ конструкции «бинокль».

При параллельном включении транзисторов и пересчёте ШПТЛ мощность можно значительно повысить. К примеру, на 4 шт. IRFPE50 (2 в плече), выходном ШПТЛ 1:1:1 и питании 310В на стоках, легко получаема выходная мощность 1кВт. При такой конфигурации КПД ШПТЛ особо высок, методика выполнения ШПТЛ неоднократно описана.

Авторский вариант усилителя на двух IRFPE50, приведенный на фотографиях выше по тексту, прекрасно работает на диапазонах 160 и 80 м. Мощность 200 Ватт на нагрузке 50 Ом при входной мощности около 1 Ватта. Цепи коммутации и «обвода» не приведены и зависят от Ваших пожеланий. Прошу обратить внимание на отсутствие в описании выходных фильтров, эксплуатация усилителя без которых недопустима.

Андрей Мошенский

Дополнение (07.02.2016):
Уважаемые читатели! По многочисленным просьбам, с разрешения Автора и редакции, выкладываю Также, привожу фотографию новой конструкции усилителя «Джин».

Операционные системы